LUMEL

TRANSDUCER OF POWER NETWORK P41

USER'S MANUAL
C

Contents

1 APPLICATION 5
2 TRANSDUCER SET 6
3 BASIC REQUIREMENTS AND OPERATIONAL SAFETY. 6
4 INSTALLATION 7
4.1 Way of fixing 7
4.2 External connections diagram 8
5 SERVICE 9
5.1 Description of the frontal plate 9
5.2 Signaling the state after switching the supply on 10
5.3 Installation of port COM drivers on a computer 11
5.4 Transducer configuration using eCon 13
5.4.1 Setting the tramsmission parameters 15
5.4.2 Setting the measurement parameters 16
5.4.3 Setting analog output parameters 17
5.4.4 Archive parameters 19
5.4.5 Erasing of counters, extreme values and archive 20
5.4.6 Clock 22
5.4.7 Measured values and status 22
6 ARCHIVE 23
7 SOFTWARE UPDATING 24
8 ERROR CODES 26
9 SERIAL INTERFACES 26
9.1 RS-485 interface - parameters 26
9.2 USB interface - parameters 26
9.3 Register map of the P41 transducer 27
10 EXAMPLES OF P41 TRANSDUCERS PROGRAMMING 38
11 TECHNICAL DATA. 40
12 ORDERING CODE 43

1. APPLICATION

The P41 transducer is a digital programmable device destined to measure and convert of 1 -phase power network.
It enables for measurement and conversion of measured quantities into standarised analog current signal.

Quantities measured and calculated by the transducer:

- phase voltage .. U
- current ...I
- active power .. P
- reactive power .. Q
- apparent power.. S
- active power factor .. Pf
- reactive power factor $\operatorname{tg} \varphi$
- averaging active power (e.g. 15 min .)............... Pav
- Tangent φ... φ
- active and reactive energy Ept, Eqt,
- frequency ...f

The transducer has an archive that can store up to 9000 values of a quantity selected by a user, together with time marker. The transducer stores maximal and minimal values for all measured quantities. Additionally, it is possible to introduce external transmission of measuring transformers which will be taken into account while measuring and calculating of all measuring quantities. The update time of all available quantities does not exceed 1 second. All quantities and configuration parameters are available through the RS485 interface and USB.
The transducer output signals are galvanically isolated from input signals and the supply. Transducer housing is made of plastic. On the external side of the transducer there are screw terminal strips socket - plug to which wires of a maximal diameter - $2,5 \mathrm{~mm}^{2}$ can be connected.

2. TRANSDUCER SET

The transducer set consists of:

- transducer P41

$$
1 \text { pc }
$$

- user's manual 1 pc
- guarantee card 1 pc
- CD 1 pc

3. BASIC REQUIREMENTS AND OPERATIONAL SAFETY.

In the safety service scope, the transducer meets the requirements of the EN 61010-1 standard.

Observations concerning the operational safety:

- All operations concerning transport, installation and commissioning as well as maintenance must be carried out by qualified, skilled personnel, and national regulations for the prevention of accidents must be observed.
- Before switching the transducer on, one must check the corectness of connections to the network.
- The removal of the transducer casing during the guarantee contract period causes its cancellation.
- The transducer is destined to be installed and used in industrial electromagnetic environment conditions.
- A switch or a circuit-breaker should be located near the device, easy accessible by the operator and suitably marked.

4. INSTALLATION

4.1. Way of fixing

The P41 transducer is adapted to be mounted on a 35 mm rail acc.to EN 60715 . The overall dimensions and the way of fixing are presented on the fig. 1.

Fig. 1. Overall dimensions and the way of fixing.

4.2. External connections diagram

The transducer connection is presented on the fig. 2.

direct measurement

indirect measurement

Fig. 2. Transducer connections

5. SERVICE

5.1 Description of the frontal plate

Fig. 3. The view of frontal plate

5.2 Signaling the state after switching the supply on

After switching the supply on, the state diode should light up for a moment in red, and next should light up in green. The recording confirmation in registers is signaled by a short extinction of a state diode. The incorrect work is signaled by the state diode in the way described in the chapter 7. The data reception through the RS485 interface is signaled by a pulsing of the RxD diode, and the data transmission is signaled by a pulsing of the TxD diode.

5.3 Installation of port COM drivers on a computer

Before carrying out the transducer configuration, the drivers provided on the attached CD should be installed. The P41 transducer uses the software, which is created in the system by the Universal Master Bus device - Przetwornik / P41 Transducer and by a virtual port Com named Przetwornik/ P41 Transducer attached to it. The installation of a driver in the Windows system causes adding another serial port Com to the list of ports serviced by the operational system.

After the transducer has been added to the USB port, the operational system will notify on the occurrence of a new device by displaying a message presented on the fig. 5. Found New Wizard of the Universal Serial Bus will activate automatically. The wizard's suggestions ought to be followed by selecting installation from the indicated localization and giving a tract for drivers, which can be found on an attached CD. The drivers are compatible with the following systems: Windows 2000, XP, Server 2003, Vista, Windows 7, Server 2008, Windows 8, Windows 10. At drivers installation, a message signaling the lack of drivers digital signature can occur. Ignore it and proceed with further installation.

i) Found New Hardware x Przetwornik/Transducer typ P4!

Fig. 4. Message signaling detection of a new device „Przetwornik / Transducer P41".

After closing the wizard, the system will immediately detect another device - USB Serial Port (fig. 5). Found new hardware wizard will be restarted.

i) Found New Hardware x

USB Serial Port

Fig. 5. System message on finding new device.

After successful installation, the system will notify on installing a new device (fig. 6). Two new devices will appear in Device Manager - Przetwornik/Transducer P41 and Port COM named: Przetwornik/ Transducer P41, according to fig. 7.

Fig. 6. System message finishing drivers installation of P41.

Fig. 7. Device manager window with installed P41 transducer with assigned port No. COM6

5.4 Transducer configuration using eCon

eCon program is destined for the configuration of the P41 transducer. The transducer ought to be connected to PC using a PD10 converter (if the communication will be carried out through RS485) or directly through USB.
Select Connection and configure the connection (fig. 8). For direct connections through USB: address 1, baud rate $9600 \mathrm{~kb} / \mathrm{s}$, mode RTU 8N2, timeout 1000ms and the proper port COM where the driver of the P41 transducer was installed or through the RS485 interface and PD10: address, baud rate, the mode in accordance with the ones set in the transducer.
e-Con
Device configurator

Select device:		
Filter:	ND30	*
(1) All	P18	
\square Transducers	P180	
\square Meters	P19	
	P20	
\square Controilers	P212	
\square RF modules	P 30 H	
Name:	P300	
	P30P	
	P30U	
	P41	*

Communication

Port Przetwornik/Transducer P41 (CON
Device ID 1
Baud rate 9600
Mode RTU BN2 -
Timeout 1000 [ms]
U Use the factory settings of the module

```
Status: port connected
Device: P41 [P41-1.03 b-1.07]

\section*{P41 - configuration}
```


(1)

```
```

+ Transmission parameters

```
, Measurement settings
- Analog output
* Archive parameters
+ Senvice parameters
* Date and time
* Measurement and status
\begin{tabular}{|l|l|}
\hline Measured values & Show \\
\hline Minimum and maximum values & Show \\
\hline Status & Show \\
\hline
\end{tabular}
```

* Console ©
[10-12-2015 10:34:26 AX] - Device con{1guration downloaded correct2y.
[10-21-2015 10:34:26 2M] - Modbus Slave device identizied as: P42 [P42 -2.03 b-2.07]
[20-12-2015 20:34:26 2M) - Connected wath serial port.
[10-11-2015 10:34:12 AM) - Disconnected

```

Fig. 8. Configuration of connection with the P41 transducer
After the connection has been configured, select Device \(\rightarrow\) Transducers \(\rightarrow\) P41 from the menu and press Connect. Befor changing the configuration the current configuraiton should be read and save to file for later restoration. From the eCon menu you can save the parameters to a file, read them and export the configuration to a PDF file (Figure 9).


Fig. 9. Readout, saving and export of settings.

\subsection*{5.4.1 Setting the transmission parameters}

After selecting the tab: - transmission parameters, the following items are available for configuration: (fig. 10):
a) address - address for the communication with the P41 transducer within the RS485 interface ranged \(1 \ldots .247\). Value 1 is set by manufacturer,
b) baud rate - the communication speed within RS485 interface ranged (4800, 9600, 19200, \(38400 \mathrm{bit} / \mathrm{s}\) ). The manufacturer's setting is on 9600 ,
c) transmission mode - transmission mode within RS485 interface ranged (RTU 8N2, RTU 8E1, RTU 8O1, RTU 8N1). The manufacturer's setting is on RTU 8N2.
\begin{tabular}{l} 
- Transmission parameters \\
\(\qquad\)\begin{tabular}{|l|l|}
\hline Device ID & 10 \\
\hline Baud rate & 9600 \\
\hline & [1 - 247] \\
\hline Mode & RTU 8N2 \\
\hline & Save \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Fig. 10. The view of configuration window for transmission parameters

\subsection*{5.4.2 Setting the measurement parameters}

After selecting the tab: - measurement settings, the following items are available for configuration (fig. 11):
- input synchronization: with voltage (measurement of all values) or with current (only current and frequency measurement)
- range of voltage ( 100 V or 400 V ) and current ( 1 A or 5 A ) input,
- transformer current ratio. The multiplier used to convert current on the primary side of transformer. It is set on 1 by the manufacturer,
- transformer voltage ratio. The multiplier used to convert voltage on the primary side of transformer. It is set on 1.0 by the manufacturer,
- the method of mean power synchronization:
- a moving window 15 min. - average power PAV will be calculated for the last 15 minutes, updated every 15 seconds, the so called moving window,
- the measurement synchronized with the clock every 15, 30 or 60 minutes - average power PAV will be updated every 15, 30 or 60 minutes synchronized with internal real clock (fig. 12). The manufacturing setting is on a walking window.
- average ordered power. Ordered power in percentage of the rated power of the transducer.
- storage of min and max values - without error values (1e20), default setting is storage without errors.
- Reactive energy calculation method: positive, negative or inductive and capacitive, default setting is inductive and capacitive.
* Measurement settings
\begin{tabular}{|c|c|}
\hline Input synchronization & Voltage (measurement of all parameters) \\
\hline Input voltage range & \(400 \mathrm{~V}-\) \\
\hline Transformer voltage ratio & 1.0 [0.1-4000.0] \\
\hline Input current range & \(1 \mathrm{~A}-\) \\
\hline Transformer current ratio & 1 [1-10000] \\
\hline Method of mean power synchronization & Moving window 15 min \\
\hline Mean ordered power & 100.0 [0.0-144.0\%] \\
\hline Store of min. and max. values & Error free \(\square\) \\
\hline \multirow[t]{2}{*}{Calculate method of reactive energy} & Positive and negative \\
\hline & Save \\
\hline
\end{tabular}

Fig. 11. View of configuration window for measurement settings


Fig. 12. Measurement of mean active power 15 minutes synchronized with the clock

\subsection*{5.4.3 Setting analog output parameters}

After selecting the tab: - analog output, the following output parameters are available for configuration:
- assigning of a parameter to the analog output. The type of signal, to which an output is to react according to table 1,
- output type: \(0 . .20 \mathrm{~mA}, 4 . .20 \mathrm{~mA},-20 . .20 \mathrm{~mA}\),
- lower value of the input range. The percentage value of a selected signal,
- upper value of the input range. The percentage value of a selected signal,
- lower value of the output range. The value of output signal in mA,
- upper value of the output range. The value of output signal in mA ,
- work mode of the analog output. The following modes are available: normal, lower value, upper value.
- output value in case of input error parameter in mA.

The exemplary configuration of the analog output was presented in the fig. 13.
* Analog output
\begin{tabular}{|l|l|l|l|}
\hline Assigning of a parameter to the analog output & Current \\
\hline Output type & \(4 \ldots 20 \mathrm{~mA}\) \\
\hline Lower value of the input range & 0.0 & {\([-144.0-144.0 \%]\)} & \\
\hline Upper value of the input range & 100.0 & {\([-144.0-144.0 \%]\)} & Calculate \\
\hline Lower value of the output range & 4.00 & {\([-24.00-24.00 \mathrm{~mA}]\)} \\
\hline Upper value of the output range & 20.00 & {\([1.00-24.00 \mathrm{~mA}]\)} \\
\hline Work mode of the analog output & Normal & \(\square\) \\
\hline Output signal in case input error & 24.00 & {\([-24.00-24.00 \mathrm{~mA}]\)} \\
\hline & Save & & \\
\hline
\end{tabular}

Fig. 13. The view of window for analog output configuration.

Admissible overflow on the analog output of \(20 \%\) of the lower and upper value of the range. The minimum value on the analog output: \(-20 \times 1,2=-24 \mathrm{~mA}\); the maximum value on the analog output \(20 \times 1,2=24 \mathrm{~mA}\).

\subsection*{5.4.4 Archive parameters}

After selecting the tab: - archive parameters, the following comments are available to carry out (fig. 14):
- selection of archive value,
- selection of archive condition,
- setting limits of archive (TL, TH).
- Archive parameters
\begin{tabular}{|l|l|l|}
\hline Archive value & Mean active power & \\
\hline Archive condition & Archive off \\
\hline Lower limit of archive TL & 5.0 & {\([0.0-144.0 \%]\)} \\
\hline Upper limit of archive TH & 5.0 & {\([0.0-144.0 \%]\)} \\
\hline Archive period ATime & 5 & {\([1-3600 \mathrm{~s}]\)} \\
\hline Archive & \multicolumn{4}{|l|}{\(\left[\begin{array}{l}\text { Show } \\
\hline\end{array}\right.\)} \\
\hline
\end{tabular}

Fig. 14. The view of configuration window for archive parameters

\subsection*{5.4.5 Erasing of counters, extreme values and archive}

After selecting the tab: - erasing of counters, extremes and archive, the following comments are available to carry out (fig. 15):
- restore factory parameters,
- erasing of energy - individual or all meters of active and reactive energy are erased,
- erasing of mean active power,
- erasing of min. and max. The actual measured value is prescribed to minimal and maximum value,
- erasing of archive.
- Service parameters
\begin{tabular}{|l|l|}
\hline Factory parameters & \multicolumn{2}{|c|}{ Restore } \\
\hline Erasing energy meters & No change \\
\hline Erasing of mean active power & \(\square\) \\
\hline Erasing of min. and max. values & \(\square\) \\
\hline Erasing of archive & \(\square\) \\
\hline & \(\square\) \\
\hline & \\
\hline
\end{tabular}

Fig. 15. The window of restoring default parameters, erasing counters, extremes and archive.

Table 1
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Parameter \\
description
\end{tabular}} & Range / Value & \begin{tabular}{c} 
Manufacturer's \\
value
\end{tabular} \\
\hline \begin{tabular}{l} 
Transformer current \\
ratio
\end{tabular} & \(1 \ldots 10000\) & 1 \\
\hline \begin{tabular}{l} 
Transformer voltage \\
ratio
\end{tabular} & \(1.0 \ldots 4000.0\) & 1 \\
\hline \begin{tabular}{l} 
Syn chronization \\
of mean active po- \\
wer:
\end{tabular} & \begin{tabular}{l} 
walking window 15 \\
minute (write into ar- \\
chive every 15 minu- \\
tes); measurement \\
syncronized with \\
the clock every 15, 30 \\
or 60 minutes
\end{tabular} & walking window \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline The method of storing the minimal and maximal values & 0.1 & \begin{tabular}{l}
0 - no errors \\
1 - with errors \\
(1e20, 1e20)
\end{tabular} \\
\hline The method of reactive power calculation & 0.1 & 0 - inductive and capacitive energy \\
\hline Ordered power & 0...144.0 \% & 100.00\% \\
\hline Quantity on the continuous output & \(0 . . .11\) (according to table 1) & 3 \\
\hline Lower value of the input range in \% of the nominal input range & -144.0 ... 144.0 \% & 0.0 \% \\
\hline Upper value of the input range in \% of the nominal input range & -144.0 ... 144.0 \% & 100.0 \% \\
\hline Lower value of the output range of the output & \(-20.00 \ldots 20.00 \mathrm{~mA}\) & 4.00 mA \\
\hline Upper value of the output range of the output & \(0.01 \ldots 20.00 \mathrm{~mA}\) & 20.00 mA \\
\hline Manual switching on of the analog output & normal work, lower value of the output range, upper value of the output range, & normal work \\
\hline Address in MODBUS network & \(1 . . .247\) & 1 \\
\hline Transmission mode: & 8n2, 8e1, 801, 8n1 & 8n2 \\
\hline Baud rate: & \[
\begin{gathered}
4800,9600,19200 \\
38400
\end{gathered}
\] & 9600 \\
\hline
\end{tabular}

\subsection*{5.4.6 Clock}

After selecting the group: - clock it is possible to set the time and date, and synchronize it with the time on the configuring computer (fig. 16).
- Date and time
\begin{tabular}{|l|l|l|l|}
\hline Date & \(2015-11-10\) & [yyyy-mm-dd] & \multirow{2}{*}{ Synchronize } \\
\hline Time & \(10: 58: 58\) & [hh:mm:ss] & \\
\hline \multicolumn{3}{|c|}{ Save } \\
\hline
\end{tabular}

Fig. 16. The view of clock configuration window.

\subsection*{5.4.7 Measured values and status}

After selecting the tab: - measured values and status (fig. 17) it is possible to slect the view of measured values, min and max values and statuses.
\begin{tabular}{l} 
- Measurement and status \\
\begin{tabular}{|l|c|}
\hline Measured values & Show \\
\hline Minimum and maximum values & Show \\
\hline Status & Show \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Measured values & * \\
\hline Stop refresh flo & float precision: \(2 \square\) \\
\hline Parameter & Value \\
\hline Rms voltage & 0 V \\
\hline Rms current & 0 A \\
\hline Active power & 0 W \\
\hline Reactive power & 0 var \\
\hline Apparent power & 0 VA \\
\hline Active power factor & --- \\
\hline Active power to reactive power ratio & --- \\
\hline Frequency & --- \\
\hline Mean active power & 0 W \\
\hline Cos (phi) & --- \\
\hline Phase shift & \(0^{\circ}\) \\
\hline Active energy import & 0 kWh \\
\hline Active energy export & 0 kWh \\
\hline Reactive inductive energy & 0 kvarh \\
\hline Reactive capacitive energy & 0 kvarh \\
\hline Output value & 4 mA \\
\hline Consumed the ordering power & 0 \% \\
\hline Current L1/3 & 0 A \\
\hline
\end{tabular}

Fig. 17. The window of measured values.

\section*{6. ARCHIVE}

The direct access to the archive is destined for 15 records containing the date, time and the value of located in the range addresses \(1000-1092\). The register 1000 is the localization for the position of the first (the oldest) archived sample, whereas in 1001 is the localization of the last archived sample (the youngest). The register 1002 contains the value of the first record of the fifteen available ones located in registers 1003 - 1092. Entering the value of the first readout record ( \(1-9000\) ) causes the data updating of 15 records to readout. In the registers, to which samples have not been entered yet, there are values 1 e 20 . The archive is arranged as a circular buffer. After the nine thousandth value has been entered, the next one overwrites the oldest one numbered 0 , the next one another one with the number 1 , etc. If the value of the register 1000 is greater than 1001, it means that the buffer has been overflowed. For example, the value 15 in the register 1000 and 14 in the register 1001 means that there were more than nine thousand samples and that the oldest samples are from the record 15 to 9000 , then from the record 1 to the youngest record numbered 14. Erasing of mean power or changing the averaging time does not erase the archive. Automatic file deletion comes with the change of current or voltage ratio.

\section*{7 SOFTWARE UPDATING}

The P41 transducer comes with the implemented function that allows for updating the software from a PC with eCon software. Free eCon program and the updating files are available on our website www.lumel.com.pl. Either RS485 port and USB port can be used to carry out the updating process.


Fig. 18. The view of program window:

\section*{a) eCon, b) program updating}

Note! After updating the software the manufacturer's settings for the transducer ought to be set, therefore it is advisable to store the transducer parameters before its updating using eCon software.

After eCon has been started, one ought to set serial port, baut rate, mode and the transducer address in Options. Then choose the P41 transducer from the menu Devices and click the icon Read in order to read all set parameters (necessary for their later restoration). After selecting from the menu Updating the option Device software updating, the Lumel Updater (LU) window opens - Fig. 18 b. Press Connect. The information window Messages contains information on the updating pro-
cess. At the correctly opened port, the message Port opened displays.
Entering the updating mode in the transducer is carried out remotely by LU program (based on the settings in eCon - adres, mode, baud rate, port Com) either through RS485 or USB. Pulsating of the transducer state diode in green signals readiness for updating, whereas the LU program displays the message Device found and the name and version of the program of the conneted device. One should press the button ... and indicate the transducer updating file. At the correctly opened file, the information File opened displays. One should press Send button. After updating being successfully completed the transducer switches to normal work, whereas the information window displays Done and the duration time of the updating. After the LU window closure, one should go to the parameters group Restoring manufacturer's settings, mark the option and press Apply button. Then press the icon Save in order to save readout initially set parameters. The up-to-date software version can also be checked via reading About P41 transducer from eCon program.

Note! Switching the supply off during the software updating process may result in permenent damage of the transducer!

\section*{8. ERROR CODES}

After connecting the transducer to the network, messages about errors can appear. Causes of the errors are presented below:
- the state diode pulsates in red - lack of calibration or the nonvoliatile memory is damaged; one must return the transducer to the manufacturer
- the state diode lights in red - inapropriate work parameters; one must configure the transducer again

\section*{9. SERIAL INTERFACES}

\subsection*{9.1 RS-485 interface - parameters}
- identifier
- transducer address
- baud rate
- working mode
- infomation unit
- maximal time of reply
- maximal number of read out registers in one query
- 60 registers - 4-byte,
- 120 registers - 2-byte,

03, 06, 16, 17
- 03 readout of registers
- 06 write of register
- 16 write of registers
- 17 device identification

Manufacturer's settings: address 1, baud rate 9600 bauds, working mode RTU 8N2.

\subsection*{9.2 USB interface - parameters}
- identifier \(0 \times A F\)
- transducer address
- baud rate1
9.6 kbit/s
- working mode
- infomation unit
- maximal time of reply
- maximal number of read out registers in one query
- implemented functions
- 60 registers - 4-byte,
- 120 registers - 2-byte,

Modbus RTU
8N2
800 ms

03, 06, 16, 17
- 03 readout of registers
- 06 write of register
- 16 write of registers
- 17 device identification

\subsection*{9.3 Register map of the P41 transducer}

The data in the P41 transducer is located in 16 and 32 -bit registers. Process variables and the transducer parameters are located in the registers address area in a way dependent on the type of the variable value. The bits in the 16-bit register are numbered from the smallest to the largest (b0-b15). The 32-bit registers contain the numbers of float type in the IEEE-745 standard. The register ranges are presented in the table 2 . The 16 -bit registers are presented in the table 4,5 . The 32 -registers are presented in the tables 6 . Registers addresses in the tables 4, 5, 6 are physical addresses.

Table 2
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c} 
Address \\
range
\end{tabular} & \multicolumn{1}{|c|}{ Value type } & \multicolumn{1}{c|}{ Description } \\
\hline \(1000-1092\) & \begin{tabular}{l} 
Integer (16 bits)/ \\
Record
\end{tabular} & \begin{tabular}{l} 
Archive of the avarage power profile. \\
Table 4 contains the registers description.
\end{tabular} \\
\hline \(4000-4062\) & \begin{tabular}{l} 
Integer \\
(16 bits)
\end{tabular} & \begin{tabular}{l} 
The value located in one 16-bit register. Table \\
5 contains the registers description. Registers \\
are for readout and writing.
\end{tabular} \\
\hline \(7000-7118\) & Float (2x16 bits) & \begin{tabular}{l} 
The value located in two consecutive 16-bit \\
registers. The registers content corresponds \\
to the 32-bit register content from the 7500 \\
area. Registers for readout.
\end{tabular} \\
\hline \(7500-7559\) & Float (32 bits) & \begin{tabular}{l} 
The value located in one 32-bit register. Table \\
6 contains the registers description. Registers \\
for readout.
\end{tabular} \\
\hline
\end{tabular}

Table 3
\begin{tabular}{|c|l|}
\hline Value & \begin{tabular}{l} 
Kind of type of input quantity, to which analog output is to \\
respond
\end{tabular} \\
\hline 0 & output swithed off \\
\hline 1 & Voltage \\
\hline 2 & Current \\
\hline 3 & Active power \\
\hline 4 & Inactive power \\
\hline 5 & Apparent power \\
\hline 6 & PF factor \\
\hline 7 & tg \(\varphi\) \\
\hline 8 & Frequency \\
\hline 9 & Active average power PAV 15, 30, 60 minute \\
\hline 10 & Current L1/3 \\
\hline 11 & Ordered power \\
\hline
\end{tabular}

Table 4
\begin{tabular}{|l|c|l|}
\hline \begin{tabular}{c} 
Regi- \\
sters \\
ad- \\
dress \\
\(\mathbf{1 6}\) bit
\end{tabular} & \begin{tabular}{c} 
Ope- \\
ra- \\
tions
\end{tabular} & \multicolumn{1}{|c|}{ Description } \\
\hline 1000 & R & Position of the oldest archived value \\
\hline 1001 & R & Position of the youngest archived value \\
\hline 1002 & \(\mathrm{R} / \mathrm{W}\) & First available reecord - NrBL (range \(1 \ldots 9000\) ) \\
\hline 1003 & R & Year of archiving the value numbered NrBL + 0 \\
\hline 1004 & R & Month * 100 + day of archiving the value numbered NrBL + 0 \\
\hline 1005 & R & Hour * 100 + minute of archiving the value numbered NrBL + 0 \\
\hline 1006 & R & Second of archiving the value NRBL + 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1007 & R & \multirow[t]{2}{*}{Archived value numbered \(\mathrm{NrBL}+0\) of float type -4 bytes in order 3-2-1-0} \\
\hline 1008 & R & \\
\hline 1009 & R & Year of archiving the value numbered \(\mathrm{NrBL}+1\) \\
\hline 1010 & R & Month, day of archiving the value numbered NrBL + 1 \\
\hline 1011 & R & Hour, minute of archiving the value numbered \(\mathrm{NrBL}+1\) \\
\hline 1012 & R & Second of archiving the value NRBL + 1 \\
\hline 1013 & R & \multirow[t]{2}{*}{Archived value of the value numbered \(\mathrm{NrBL}+1\) float type -4 bytes in order 3-2-1-0} \\
\hline 1014 & R & \\
\hline ... & \(\ldots\) & \(\ldots\) \\
\hline 1087 & R & Year of archiving the value numbered \(\mathrm{NrBL}+14\) \\
\hline 1088 & R & Month, day of archiving the value numbered NrBL + 14 \\
\hline 1089 & R & Hour, minute of archiving the value numbered NrBL + 14 \\
\hline 1090 & R & Second of archiving the value NRBL + 0 \\
\hline 1091 & R & \multirow[t]{2}{*}{Archived value of the value numbered \(\mathrm{NrBL}+14\) float type - 4 bytes in order 3-2-1-0} \\
\hline 1092 & R & \\
\hline
\end{tabular}

Table 5
\begin{tabular}{|c|c|c|c|c|}
\hline  & \[
\begin{aligned}
& \text { n } \\
& \frac{0}{\#} \\
& \frac{0}{\omega} \\
& \text { O}
\end{aligned}
\] & Range & Description &  \\
\hline 4000 & RW & \(0 . .1\) & \begin{tabular}{l}
Input synchronization: \\
0 - synchronization with voltage (measurement of all values) 1- synchronization with current (measurement of current and frequency only)
\end{tabular} & 0 \\
\hline 4001 & RW & \(0 . .1\) & \begin{tabular}{l}
Voltage input range: \\
0 - range 100 V \\
1 - range 400 V
\end{tabular} & 1 \\
\hline 4002 & RW & \(0 . .1\) & \begin{tabular}{l}
Current input range \\
0 - range 1A \\
1 - Range 5A
\end{tabular} & 1 \\
\hline 4003 & RW & 1.. 40000 & Voltage transformer ratio \(\times 10\) & 10 \\
\hline 4004 & RW & \(1 . .10000\) & Current transformer ratio & 1 \\
\hline 4005 & RW & \(0 . .3\) & \begin{tabular}{l}
Synchronizing of active mean power: \\
0 - walking window 15 minute (entry synchronized with the clock every 15 minutes) \\
1 - measurement synchronized with the clock every 15 minutes, \\
2 - measurement synchronized with the clock every 30 minutes, \\
3 - measurement synchronized with the clock every 60 minutes,
\end{tabular} & 0 \\
\hline 4006 & RW & \(0 . .11\) & Archived quantity / code acc.to table3 / & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 4007 & RW & \(0 . .9\) & \begin{tabular}{l}
Archiving condition \\
0 - continous archiving when the value >= reg 4009 \\
1 - continous archiving when the value < reg 4008 \\
2 - continous archiving when the value <= reg 4009 and value >= reg4008 \\
3 - continous archiving when the value >= reg 4009 and value <= reg4008 \\
4 - continous archiving every 1 s \\
5 - archiving turned off \\
6 - archiving every 15 minutes synchronized with RTC \\
7 - archiving every 30 minutes synchronized with RTC \\
8 - archiving every 60 minutes synchronized with RTC \\
9 - archiving every time set in reg 4010
\end{tabular} & 5 \\
\hline 4008 & RW & 0.1440 & Lower archiving value & 100 \\
\hline 4009 & RW & 0.1440 & Upper archiving value & 100 \\
\hline 4010 & RW & 1... 3600 & Archiving time & 900 \\
\hline 4011 & RW & 0.65535 & reserved & \\
\hline 4012 & RW & 0,1 & Way to store minimal and maximal value: 0 - no errors, 1 - with errors & 0 \\
\hline 4013 & RW & 0,1 & reserved & 1 \\
\hline 4014 & RW & 0,1 & \begin{tabular}{l}
Way to count reactive energy: \\
0 - inductive and capacitive energy \\
1 - positive and negative energy
\end{tabular} & 0 \\
\hline 4015 & RW & \(0 . .1440\) & Ordered power in [o/oo] of rated input range & 1000 \\
\hline 4016 & RW & 0... 4 & \begin{tabular}{l}
Erasing of watt-hour meters: \\
0 - no changes, 1 - erase active energies, \\
2 - erase reactive energies, 3 - erase all energies
\end{tabular} & 0 \\
\hline 4017 & RW & 0,1 & Erasing of active mean power PAV & 0 \\
\hline 4018 & RW & 0,1 & Erasing archive & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 4019 & RW & 0,1 & Erasing of min and max & 0 \\
\hline 4020 & RW & \(0 . .65535\) & reserved & - \\
\hline 4021 & RW & \(0 . .65535\) & reserved & - \\
\hline 4022 & RW & \(0 . .65535\) & reserved & - \\
\hline 4023 & RW & \(0 . .65535\) & reserved & - \\
\hline 4024 & RW & \(0 . .65535\) & reserved & - \\
\hline 4025 & RW & \(0 . .65535\) & reserved & - \\
\hline 4026 & RW & 0.. 65535 & reserved & - \\
\hline 4027 & RW & \(0 . .65535\) & reserved & - \\
\hline 4028 & RW & 0.1..11 & Analog output 1 - quantity on the output / code acc. to table 3 / & 3 \\
\hline 4029 & RW & \(0 . .2\) & Analog output 1 - type: \(0-(0 \ldots 20) \mathrm{mA}\); 1 - (4...20) mA; 2 - (-20 ..20) mA & 0 \\
\hline 4030 & RW & \[
\begin{aligned}
& -1440 . .0 . . \\
& 1440\left[\%_{00}\right]
\end{aligned}
\] & Analog output 1 - lower value of the input range in \([\%\) oo \(]\) of rated input range & 0 \\
\hline 4031 & RW & \[
\begin{aligned}
& -1440 . .0 . . \\
& 1440\left[\%_{\text {oo }}\right]
\end{aligned}
\] & Analog output 1 - upper value of the input range in [ \(\%\) oo ] of rated input range & 1000 \\
\hline 4032 & RW & \[
\begin{gathered}
-2400 . .0 . . \\
2400 \text { [10uA] }
\end{gathered}
\] & Analog output 1 - lower value of the current output range [10 uA] & 0 \\
\hline 4033 & RW & \[
\begin{aligned}
& 1 . .2400 \\
& {[10 \mathrm{uA}]}
\end{aligned}
\] & Analog output 1 - upper value of the current output range [10 uA] & 2000 \\
\hline 4034 & RW & \(0 . .2\) & Analog output 1 - manual switch on: 0 - normal work, 1 - value set from the register 4032, 2-value set from the register 4033 & 0 \\
\hline 4035 & RW & \[
\begin{gathered}
-2400 \ldots \\
2400 \\
{[10 \mathrm{uA}]}
\end{gathered}
\] & Analog output 1 -output value when error & 2400 \\
\hline 4036 & RW & 0.. 65535 & reserved & \\
\hline 4037 & RW & 1.. 247 & Address in MODBUS network & 1 \\
\hline 4038 & RW & \(0 . .3\) & Transmission mode: \(0->8 \mathrm{n} 2,1->8 \mathrm{e} 1,2->8 \mathrm{o}\), 3->8n1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|l|c|}
\hline 4039 & RW & \(0 . .3\) & \begin{tabular}{l} 
transmission baud: 0->4800, 1->9600 \\
\(2->19200,3->38400\)
\end{tabular} & 1 \\
\hline 4040 & RW & 0,1 & Update the change of transmission parameters & 0 \\
\hline 4041 & RW & \(0 . .59\) & Seconds & 0 \\
\hline 4042 & RW & \(0 . . .2359\) & Hour *100 + Minutes & 0 \\
\hline 4043 & RW & \begin{tabular}{l}
\(101 \ldots\) \\
1231
\end{tabular} & Month * 100 + day & 1201 \\
\hline 4044 & RW & \begin{tabular}{c}
\(2009 \ldots\) \\
2100
\end{tabular} & Year & 2010 \\
\hline 4045 & RW & 0,1 & \begin{tabular}{l} 
Record of standard parameters (with energy \\
reset and min, max and mean power)
\end{tabular} & 0 \\
\hline 4046 & R & \(0 . .15258\) & Imported active energy, two smaller bytes & 0 \\
\hline 4047 & R & \(0 . .65535\) & Imported active energy, two larger bytes & 0 \\
\hline 4048 & R & \(0 . .15258\) & Exported active energy, two larger bytes & 0 \\
\hline 4049 & R & \(0 . .65535\) & Exported active energy, two smaller bytes & 0 \\
\hline 4050 & R & \(0 . .15258\) & Reactive inductive energy, two larger bytes & 0 \\
\hline 4051 & R & \(0 . .65535\) & Reactive inductive energy, two smaller bytes & 0 \\
\hline 4052 & R & \(0 . .15258\) & Reactive capacitive energy, two larger bytes & 0 \\
\hline 4053 & R & \(0 . .65535\) & Reactive capacitive energy, two smaller bytes & 0 \\
\hline 4054 & R & 0 & reserved & 0 \\
\hline 4055 & R & 0 & reserved & 0 \\
\hline 4056 & R & 0 & reserved & 0 \\
\hline 4057 & R & 0 & reserved & 0 \\
\hline 4058 & R & \(0 . .65535\) & Status Register 1 - description below & - \\
\hline 4059 & R & \(0 . .65535\) & reserved & - \\
\hline 4060 & R & \(0 . .65535\) & Serial number two larger bytes & - \\
\hline 4061 & R & \(0 . .65535\) & Serial number two smaller bytes & - \\
\hline 4062 & R & \(0 . .65535\) & Program version (* 100) & 0 \\
\hline
\end{tabular}

The brackets [ ] contain correspondingly: resolution or unit.

Energies are available in hundreds of watt-hours (var-hours) in two 16 -bit registers, that is why while converting the values for the individual energies from registers they ought to be divided by 10 e.g.:
Imported active energy \(=\) (reg. value \(4089 \times 65536+\) reg. value 4090) / 10 [kWh]
Exported active energy = (reg. value \(4091 \times 65536+\) reg. value 4092) / 10 [kWh]
Reactive inductive energy \(=(\) reg. value \(4093 \times 65536+\) reg. value 4094 \()\) / 10 [kVarh]
Reactive capacitive energy \(=\) (reg. value \(4095 \times 65536+\) reg. value 4096) / 10 [kVarh]

Status Register 1:
Bit 14-„1" - lack of calibration or calibration error
Bit 13-„1" - parameters value error
Bit 12 - „1" - energy value error
Bit 11 - reserved
Bit 10 - reserved
Bit 9 -reserved
Bit 8 -reserved
Bit 7 - „1" - the interval of power averaging did elapsed
Bit 6 - „ 1 " - voltage too low to measure frequency
Bit 5 - reserved
Bit 4 - reserved
Bit 3 - reserved
Bit 2 - „1" - capacity character maximum
Bit 1-„1" - capacity character minimum
Bit 0-„1" - capacity chracter Q

Table 6
\begin{tabular}{|c|c|c|c|c|}
\hline  &  & \[
\begin{aligned}
& \text { ㄷ } \\
& 0 \\
& \frac{\pi}{0} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & Description & - \\
\hline 7000 & 7500 & R & Voltage U & V \\
\hline 7002 & 7501 & R & Current I & A \\
\hline 7004 & 7502 & R & Active power \(P\) & W \\
\hline 7006 & 7503 & R & Reactive power Q & Var \\
\hline 7008 & 7504 & R & Apparent power S & VA \\
\hline 7010 & 7505 & R & Active power factor & - \\
\hline 7012 & 7506 & R & Active power to reactive power ratio & - \\
\hline 7014 & 7507 & R & Frequency & Hz \\
\hline 7016 & 7508 & R & Mean active power PAV 15, 30, 60 minute & PAV \\
\hline 7018 & 7509 & R & reserved & \\
\hline 7020 & 7510 & R & reserved & \\
\hline 7022 & 7511 & R & Cosine angle between \(U\) and I & - \\
\hline 7024 & 7512 & R & Angle between \(U\) and I & - \\
\hline 7026 & 7513 & R & Imported active energy (number of register overflow 7513 , reset after exceeding 99999999.9 kWh ) & \[
\begin{gathered}
100 \\
\mathrm{MWh}
\end{gathered}
\] \\
\hline 7028 & 7514 & R & Imported active energy (countdown counter up to 99999.9 kWh ) & kWh \\
\hline 7030 & 7515 & R & Exported active energy (number of register overflows 7515, reset after exceeding 99999999.9 kWh) & \[
\begin{gathered}
100 \\
\mathrm{MWh}
\end{gathered}
\] \\
\hline 7032 & 7516 & R & Exported active energy (countdown counter up to 99999.9 kWh ) & kWh \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 7034 & 7517 & R & Reactive inductive energy (number of register overflows 7517, reset after exceeding 99999999,9 kVarh) & 100 Mvarh \\
\hline 7036 & 7518 & R & Reactive inductive energy (countdown counter up to 99999.9 kVarh) & kvarh \\
\hline 7038 & 7519 & R & Reactive capacitive energy (number of register overflows 7519, reset after exceeding 99999999.9 kVarh ) & 100 Mvarh \\
\hline 7040 & 7520 & R & Reactive capacitive energy (countdown counter up to 99999,9 kVarh) & kvarh \\
\hline 7042 & 7521 & R & reserved & - \\
\hline 7044 & 7522 & R & reserved & - \\
\hline 7046 & 7523 & R & reserved & - \\
\hline 7048 & 7524 & R & reserved & - \\
\hline 7050 & 7525 & R & Time - seconds & sek \\
\hline 7052 & 7526 & R & Time - hours, minutes & - \\
\hline 7054 & 7527 & R & Date - month, day & - \\
\hline 7056 & 7528 & R & Date - year & - \\
\hline 7058 & 7529 & R & Steering of analog output & mA \\
\hline 7060 & 7530 & R & Ordered power used & \% \\
\hline 7062 & 7531 & R & Current / 3 & A \\
\hline 7064 & 7532 & R & Status 1 & - \\
\hline 7066 & 7533 & R & Status 2 & - \\
\hline 7068 & 7534 & R & Voltage min & V \\
\hline 7070 & 7535 & R & Voltage max & V \\
\hline 7072 & 7536 & R & Current min & A \\
\hline 7074 & 7537 & R & Current max & A \\
\hline 7076 & 7538 & R & Active power min & W \\
\hline 7078 & 7539 & R & Active power max & W \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|c|}
\hline 7080 & 7540 & \(R\) & Reactive power min & var \\
\hline 7082 & 7541 & \(R\) & Reactive power max & var \\
\hline 7084 & 7542 & \(R\) & Apparent power min & VA \\
\hline 7086 & 7543 & \(R\) & Apparent power max & VA \\
\hline 7088 & 7544 & \(R\) & Power factor (PF) min & - \\
\hline 7090 & 7545 & \(R\) & Power factor (PF) max & - \\
\hline 7092 & 7546 & \(R\) & Reactive power to active power ratio min & - \\
\hline 7094 & 7547 & \(R\) & Reactive power to active power ratio max & - \\
\hline 7096 & 7548 & \(R\) & Frequency min & Hz \\
\hline 7098 & 7549 & \(R\) & Frequency max & Hz \\
\hline 7100 & 7550 & \(R\) & Active mean power 15, 30, 60 minute min & W \\
\hline 7102 & 7551 & \(R\) & Active mean power 15, 30, 60 minute max & W \\
\hline 7104 & 7552 & \(R\) & reserved & - \\
\hline 7106 & 7553 & \(R\) & reserved & - \\
\hline 7108 & 7554 & \(R\) & reserved & - \\
\hline 7110 & 7555 & \(R\) & reserved & - \\
\hline 7112 & 7556 & \(R\) & Cosine of the angle between U and I min & - \\
\hline 7114 & 7557 & \(R\) & Cosine of the angle between U and I max & - \\
\hline 7116 & 7558 & \(R\) & Angle between U and I min & \(\circ\) \\
\hline 7118 & 7559 & \(R\) & Angle between U and I max & \(\circ\) \\
\hline
\end{tabular}

In case of lower overflow the value -1 e 20 is entered, whereas at upper overflow or error occurence the value 1 e 20 is entered.

\section*{10. EXAMPLES OF P41 TRANSDUCERS PROGRAMMING}

\section*{Example 1. Programming of unidirectional analog output}

To program the operation of the analog output in such a way that input current values 4A correspond to the value 20 mA of the analog output, whereas input current value 0 A corresponds to the value 4 mA of the analog output.

Table 7
\begin{tabular}{|c|c|l|}
\hline \begin{tabular}{c} 
Regi- \\
ster
\end{tabular} & Value & \multicolumn{1}{|c|}{ Meaning } \\
\hline 4028 & 2 & 2 - current \\
\hline 4029 & 1 & analog output 1 - type: \(1-(4 \ldots 20) \mathrm{mA}\) \\
\hline 4030 & 0 & \begin{tabular}{l}
\(0-0,0\) \% (percentage value with one decimal place \\
multiplied by 10) lower value of rated three-phase mean \\
current, (0 A / 5 A ) x 1000 = 0
\end{tabular} \\
\hline 4031 & 800 & \begin{tabular}{l}
\(800-80,0 \%\) (percentage value with one decimal \\
place multiplied by 10) upper value of rated current, \\
\((4 \mathrm{~A} / 5 \mathrm{~A}) \times 1000=800\)
\end{tabular} \\
\hline 4032 & 400 & \begin{tabular}{l}
\(400-4,00 \mathrm{~mA}(\) value in mA with two decimal places mul- \\
tiplied by 100) lower value of current output, \\
\((4.00 \mathrm{~mA} \times 100)=400\)
\end{tabular} \\
\hline 4033 & 2000 & \begin{tabular}{l}
\(2000-20,00 \mathrm{~mA}\) (value in mA with two decimal places \\
multiplied by 1000) upper value of current output, \\
\((20.00 \mathrm{~mA} \times 100)=2000\)
\end{tabular} \\
\hline 4034 & 0 & \begin{tabular}{l}
\(0-\) normal mode of an analog output
\end{tabular} \\
\hline 4035 & 2400 & \begin{tabular}{l}
\(24-24 \mathrm{~mA}\) on a continuous output when error \((-1 \mathrm{e} 20\) \\
or 1e20)
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 2. Programming of bidirectional analog output}

To program the operation of the analog output in such a way, that at the power value \(4 \mathrm{~A} \times 230 \mathrm{~V} \times \cos \left(180^{\circ}\right)=-2760 \mathrm{~W}\) on the output was the value -20 mA , whwreas for the power value \(4 \mathrm{~A} \times 230 \mathrm{~V} \times \cos \left(0^{\circ}\right)\) \(=2760 \mathrm{~W}\) was the value 20 mA .

Table 8
\begin{tabular}{|c|c|c|}
\hline Register & Value & Meaning \\
\hline 4028 & 3 & 3 - current \\
\hline 4029 & 2 & analog output 1 - type: \(1-(4 \ldots 20) \mathrm{mA}\) \\
\hline 4030 & -800 & -100 - 100,0 \% (percentage value with one decimal place multiplied by 10) lower value of rated power,
\[
\left.\left(4 \mathrm{~A} \times 230 \mathrm{~V} \times \cos \left(180^{\circ}\right) / 5 \mathrm{~A} \times 230 \mathrm{~V}\right) \times 1000=-800\right)
\] \\
\hline 4031 & 800 & \(1000-100,0 \%\) (percentage value with one decimal place multiplied by 10) upper value of three-phase rated power,
\[
\left(4 \mathrm{~A} \times 230 \mathrm{~V} \times \cos \left(0^{\circ}\right) / 5 \mathrm{~A} \times 230 \mathrm{~V}\right) \times 1000=800
\] \\
\hline 4032 & -2000 & \(-2000--20,00 \mathrm{~mA}\) (value in mA with two decimal places multiplied by 100) lower value of current output, \((-20.00 \mathrm{~mA} \times 100)=-2000\) \\
\hline 4033 & 2000 & \(2000-20,00 \mathrm{~mA}\) (value in mA with two decimal places multiplied by 100) upper value of current output,
\[
(20.00 \mathrm{~mA} \times 100)=2000
\] \\
\hline 4034 & 0 & \(0-\) normal mode of an analog output 1 \\
\hline 4035 & 24 & \(24-24 \mathrm{~mA}\) on continuous output 1 when error (-1e20 or 1 e 20 ) \\
\hline
\end{tabular}

\section*{11. TECHNICAL DATA}

Measuring ranges and admissible basic errors (table 9)
Table 9
\begin{tabular}{|c|c|c|}
\hline Measured quantity & Measuring range & \begin{tabular}{c} 
Basic \\
error
\end{tabular} \\
\hline \begin{tabular}{c} 
Current \(1 \mathrm{~A} \mathrm{\sim} \sim\) \\
\(5 \mathrm{~A} \mathrm{\sim}\)
\end{tabular} & \begin{tabular}{c}
\(0.005 \ldots 1.200 \mathrm{~A} \mathrm{\sim}\) \\
\(0.025 \ldots 6.000 \mathrm{~A} \sim\)
\end{tabular} & \(\pm 0.2 \%\) \\
\hline Voltage L-N \(100 \mathrm{~V} \sim\) \\
\(400 \mathrm{~V} \sim\) & \begin{tabular}{c}
\(1 . .120 .0 \mathrm{~V} \sim\) \\
\(4 \ldots . .480 \mathrm{~V} \sim\)
\end{tabular} & \(\pm 0.2 \%\) \\
\hline Frequency & \(\underline{45.0 \ldots .66 .0 \ldots 100 \mathrm{~Hz}}\) & \(\pm 0.2 \%\) \\
\hline Active power & \(-2.88 \mathrm{~kW} . .1 .40 \mathrm{~W} . .2 .88 \mathrm{~kW}\) & \(\pm 0.5 \%\) \\
\hline Reactive power & \(-2.88 \mathrm{kvar} . .1 .40 \mathrm{var} . .2 .88 \mathrm{kvar}\) & \(\pm 0.5 \%\) \\
\hline Apparent power & \(1,40 \mathrm{VA} . .2,88 \mathrm{kVA}\) & \(\pm 0.5 \%\) \\
\hline PF factor & \(-1 \ldots 0 \ldots 1\) & \(\pm 0.5 \%\) \\
\hline Tangent \(\varphi \mathrm{i}\) & \(-1.2 \ldots 0 \ldots 1.2\) & \(\pm 1 \%\) \\
\hline\(\varphi\) & \(0 . .359\) & \(\pm 1 \%\) \\
\hline Active energy & \(0 \ldots 9999999.9 \mathrm{kWh}\) & \(\pm 0.5 \%\) \\
\hline Reactive energy & \(0 \ldots 9999999.9 \mathrm{kvarh}\) & \(\pm 0.5 \%\) \\
\hline
\end{tabular}

Standard conversion time: 1.2 s
Maximal conversion time: 2.2 s
Power consumption:
- in supply circuit
- in voltage circuit
- in current circuit
\[
\begin{aligned}
& \leq 3 \mathrm{VA} \\
& \leq 0.05 \mathrm{VA} \\
& \leq 0.05 \mathrm{VA}
\end{aligned}
\]

Analog output
programmable output:
current (max. range) -24..0..+24 mA termination resistance of current output Rload: \(0 . .250 \Omega\) voltage: 15 V

RS485: address 1..247; mode: 8N2, 8E1, 8O1,8N1; baud rate: \(4.8,9.6,19.2,38.4 \mathrm{kbit} / \mathrm{s}\), USB: 1.1 / 2.0, address 1; tryb 8N2; baud rate 9.6 kbit/s, max. USB cable lenght \(\leq 3 \mathrm{~m}\) transmission protocol: modbus RTU response time: 1000 ms

Ratio of the Voltage transformer Ku
0.1 .. 4000.0
Protection degree ensured by the housing:
for the housing for terminals
IP 40
IP 10

Weight
Dimensions

Fixing Way
0.2 kg
\(40 \times 120 \times 100 \mathrm{~mm}\)
on a 35 mm DIN rail
Reference and rated operating conditions
- supply voltage
- input signal
85.. 253 V a.c. \(40 . .400 \mathrm{~Hz}\); \(90 . .300 \mathrm{~V}\) d.c.
20.. 40 V a.c. \(40 . .400 \mathrm{~Hz} ; 20 . .60 \mathrm{~V}\) d.c.

0 .. 0.005..1.2 In; 0.01..1.2 Un
for current and voltage
0 .. 0.005..1.2 In; 0..0.01..1.2 Un
for power factors Pfi ,tpi frequency \(45 . .66 . .100 \mathrm{~Hz}\)
sinusoidal (THD \(\leq 8 \%\) )
- power factor
- analog output
- ambient temperature
- storage temperature
- humidity
-1 .. 0 .. 1
-24 .. -20 .. 0 .. +20.. 24 mA
-10 .. 23 .. \(+55^{\circ} \mathrm{C}\)
-30 .. \(+70^{\circ} \mathrm{C}\)
< 95\% (condensation inadmissible)
- admissible peak factor:
- current intensity
- voltage
- external magnetic field
- short duration overload (5 s)
voltage input
current input
- work position
- warm-up time

Additional errors:
in \% of a basic error
- from frequency of input signals
- from ambient temperature changes
- for THD > 8\%
\(0 . .40\).. \(400 \mathrm{~A} / \mathrm{m}\)
2 Un (max. 1000 V )
10 In
any
5 min.
< 50\%
\(<50 \% / 10^{\circ} \mathrm{C}\)
< 100 \%

\section*{Standards fulfilled by the transducer}

Electrical measuring transducers for converting electrical quantities of alternating current into analog or digital signals EN 60688

\section*{Kompatybilność elektromagnetyczna:}
- noise immunity acc. to EN 61000-6-2
- noise emission acc. to EN 61000-6-4

\section*{Safety requirements:}
according to EN 61010-1
- isolation between circuits: basic,
- installation category III,
- pollution level 2 ,
- maximal phase-to-earth voltage:
- for supply and measurement circuits 300 V
- for other circuits 50 V
- altitude above the sea level < 2000 m ,

\section*{12. ORDERING CODE}

Table 9
\begin{tabular}{|c|c|c|c|c|}
\hline P43- & \multirow[t]{2}{*}{X} & \multirow[t]{5}{*}{XX} & \multirow[t]{8}{*}{X} & \multirow[t]{11}{*}{X} \\
\hline Supply: & & & & \\
\hline 85.. 253 V a.c. \(40 . .400 \mathrm{~Hz}\); \(90 . .300 \mathrm{~V}\) d.c. & 1 & & & \\
\hline \(20 . .40 \mathrm{~V}\) a.c. \(40 . .400 \mathrm{~Hz}\); \(20 . .60 \mathrm{~V}\) d.c. & 2 & & & \\
\hline \multicolumn{2}{|l|}{Version:} & & & \\
\hline standard & & 00 & & \\
\hline custom-made* & & XX & & \\
\hline \multicolumn{3}{|l|}{Language:} & & \\
\hline Polish & & & P & \\
\hline English & & & E & \\
\hline other & & & X & \\
\hline Acceptance tests: & & & & \\
\hline without extra quality requirements & & & & 0 \\
\hline with an extra quality inspection certificate & & & & 1 \\
\hline acc. to customer's requirements * & & & & X \\
\hline
\end{tabular}
* after agreeing with the manufacturer

\section*{EXAMPLES OF ORDERS:}

The code P41-100E0 means the transducer with supplay voltage 85.. 253 V a.c.; 90.. 300 V d.c. Standard version, user's manual in English, without extra quality requirements.

\title{
LUMEL
}


\section*{LUMEL S.A.}
ul. Słubicka 1,65-127 Zielona Góra, POLAND tel.: + 48684575 100, fax +48684575508
www.lumel.com.pl,
e-mail: lumel@lumel.com.pl

\section*{Export department:}
tel.: (+48 68) 4575 139, 4575 233, 4575 321, 4575386
fax.: (+4868) 3254091
e-mail: export@lumel.com.pl```

